Действие рентгеновского излучения на человека

Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.

Как радиация попадает в организм

Радиация представляет собой ионизирующее излучение, которое приникает в организм человека при его контакте с источником, которым может быть:

  • космос и среда обитания (из нее человек получает до 60 % облучения);
  • атомные электростанции;
  • старое оборудование, включая ламповые мониторы;
  • медицинское оборудование, включая рентген-аппараты, технику для проведения КТ-диагностики.

Современное медицинское оборудование предоставляет человеку минимальные дозы радиации (ионизирующего излучения, способного расщеплять молекулы на составляющие). Ее можно вывести из организма, зная, что есть после рентгена, и какие препараты для этой цели можно применять.

Рентген

Вильгельм Конрад Рентген – немецкий физик, открывший и изучивший в 19 веке лучи, проникающие через непрозрачные предметы. В его честь были названы эти лучи, а также единица измерения интенсивности ионизирующего излучения. Удивительные лучи наблюдали также Т. Эдисон и Никола Тесла. Работая с ними, они или их сотрудники получали даже ожоги. В те времена ещё не все знали о пользе и вреде новых лучей.

Рентгеновские лучи были открыты случайно, в ходе экспериментов с катодными лучами, как называли тогда свободные электроны. В стеклянной трубке, из которой был откачан воздух, нагревали нить накаливания из различных материалов и при помощи дополнительных электродов изучали проходящий ток и действие лучей на разные материалы. Случайно было замечено почернение фотопластинок, находящихся рядом. Рентген уделил время их изучению и понял, почему они засвечены.

Оказалось, что попадание катодных лучей на анод выбивает из него какие-то новые лучи, обладающие совершенно удивительными свойствами. Трубка была специально сконструирована для изучения новых лучей и Рентген приступил к изучению их свойств. В том числе и оптических: поглощение, преломление и отражение для различных веществ и материалов. Итогом оказалось вручение Рентгену Нобелевской премии по физике в 1901 году.

Так как учёные забавлялись фотографиями, а лучше сказать, рентгенограммами своих рук и других частей тела, на которых лучше всего были видны кости, то на эти снимки очень быстро обратили внимания врачи. Врачам эти изображения говорили гораздо больше, чем не знакомым с анатомией физикам. Врачи быстро оценили диагностические возможности снимков. Немалый вклад в это внёс сам Рентген, который, как почти все немцы, был очень практичным человеком и один из первых его докладов по новой теме был сделан именно в обществе медиков.

Рентген

Тем временем физики продолжали изучать новые явления и установили природу рентгеновских лучей. Оказалось, что рентген – это обычный свет, но только с гораздо более короткой длиной волны. После видимого света идёт ультрафиолетовый свет, с более короткой длиной волны, затем идёт рентгеновское излучение, наконец, гамма-излучение, возникающее при естественном или искусственном делении и распаде атомных ядер. Чем короче длина волны, тем больше энергия излучения и тем выше его способность проникать сквозь вещество.

Современная рентгеновская трубка – это металлический прибор с вольфрамовым анодом, охлаждаемым водой для защиты от расплавления, работающий от источника высокого напряжения. Это необходимо для достаточного ускорения электронов, чтобы при их последующем торможении на аноде получить кванты с требуемой энергией. По мере роста напряжения на трубке, укорачивается длина волны рентгена и возрастает энергия излучения. Чем больше ток луча – тем больше её интенсивность и мощность.

Читайте также:  Цитологический препарат соскоба конъюнктивы при трахоме

Особенностью рентгеновских и гамма-лучей оказалось то, что они способны ионизировать вещество, разбивать его молекулы на части из-за своей большой энергии. Иногда это хорошо, иногда – плохо. Всё живое на Земле оказалось слишком чувствительным по отношению к этой новой форме энергии. Разумное использование рентгеновских лучей приносит большую пользу. С помощью рентгена просвечивают и изучают живые ткани и убивают клетки опасных опухолей. Однако бесконтрольное облучение рентгеном может быть причиной тяжёлых и смертельных заболеваний: незаживающих ожогов, опухолей, лучевой болезни и лейкемии. Рентген является разновидностью радиации и современные нормы в дозах облучения сильно ужесточены по сравнению с началом двадцатого века, когда рентген только начинал использоваться в медицине.

Применение и свойства рентгеновского излучения

Излучение делится два типа:

  • Характеристическое;
  • Тормозное.

Лучи характеристического типа получаются при перестройке атомов анода рентгеновской трубки. Волны различаются длиной, на них воздействуют номера химических элементов, которые используются при получении трубки.

Тормозные лучи появляются из-за торможения электронов, которые испаряются из вольфрамовой спирали.

У электромагнитных волн существует ряд характеристик, объясняющихся их природой. Электромагнитные волны при перпендикулярном падении на плоскость не отражаются.

Это интересно! При перечне соблюдённых условий алмаз отразит их.

Электромагнитные волны пробиваются через непроницаемые предметы: бумага, металл, дерево, живые ткани. Чем поверхность материала плотнее и толще, тем лучи поглощаются интенсивнее и больше.

Рентгеновское излучение вызывает свечение некоторых элементов. Он останавливается после прекращения воздействия электромагнитных волн. Электромагнитные волны засвечивают фотоплёнку.

Применение и свойства рентгеновского излучения

При прохождении лучей в воздухе происходит его ионизация. В итоге воздух способен проводить ток. Облучение повреждает клетки, это связано с ионизацией биологических структур.

Благодаря рентгеновскому излучению можно просветить тело человека, чтобы получить снимок его костей. При современных технологиях также возможно выявление внутренних органов. С помощью обычных приборов получают двумерную проекцию, а благодаря компьютерным томографам возможно сделать объёмное изображение человеческих органов.

В этом промежутке времени существует такое понятие как рентгеновская дефектоскопия. С помощью неё выявляют повреждения в различных изделиях, к примеру, в варочных швах и в рельсах.

Во многих науках рентгеновское излучение применяется для выявления строения элементов на уровне атомов при помощи дифракционного рассеяния рентгеновского излучения. Это называется рентгеноструктурным анализом. В качестве примера можно привести выявление структуры ДНК.

Химический состав элементов также выявляется благодаря электромагнитным волнам. Вещество, по которому осуществляется анализ, облучается электронами, в процессе происходит ионизация атомов. Такой метод называется рентгено-флюоресцентным.

На сегодняшний момент применение рентгеновского излучения осуществляется в разных отраслях. В целях безопасности создаются переносные и стационарные приборы для выявления запрещённых или опасных для жизни предметов в таможнях, аэропортах и местах, где часто происходят столпотворения людей.

Благодаря специальным телескопам возможно наблюдение за космическими телами и различными явлениями. При помощи электромагнитных волн разрабатывается лазерное оружие.

Что такое рентгеновское излучение, его свойства и применение :

Какова природа рентгеновского излучения

Эти электромагнитные волны испускаются при участии электронов, в отличие от гамма-излучения, которое является ядерным. Искусственно рентгеновское излучение создается путем сильного ускорения заряженных частиц и путем перехода электронов с одного энергетического уровня на другой с высвобождением большого количества энергии.

Что такое рентгеновское излучение, его свойства и применение :

Устройства, на которых можно получить рентгеновское излучение — это рентгеновские трубки и ускорители заряженных частиц. Естественными источниками его являются радиоактивно нестабильные атомы и космические объекты.

Читайте также:  Как выглядят на УЗИ полипы в матке и эндометрии с кровотоком

История открытия

Оно было сделано в ноябре 1895 года Рентгеном — немецким ученым, который обнаружил эффект флуоресценции платино-цианистого бария во время работы катодолучевой трубки. Он описал характеристики этих лучей довольно подробно, включая способность проникать сквозь живые ткани. Они были названы ученым икс-лучами (X-rays), название «рентгеновские» прижилось в России позднее.

Чем характеризуется этот вид излучения

Что такое рентгеновское излучение, его свойства и применение :

Логично, что особенности данного излучения обусловлены его природой. Электромагнитная волна — вот что такое рентгеновское излучение. Свойства его следующие:

  • Отражение. Эти волны практически не отражаются при падении на поверхность перпендикулярно. Установлено, что при определенных условиях свойством отражать лучи обладает алмаз.
  • Проникающая способность. Они проходят сквозь непрозрачные объекты, такие как металл, бумага, дерево, живые ткани.
  • Поглощаемость. Чем плотнее материал, через который проходят икс-лучи, тем выше степень их поглощения.
  • Могут вызывать флуоресценцию (свечение) некоторых веществ. Она исчезает после прекращения действия лучей; если же свечение продолжается и после этого, то этот эффект называют фосфоресценцией.
  • Способность “засвечивать” фотопленку подобно видимому свету.
  • Ионизация воздуха при прохождении через него. В результате он становится электропроводным, этот эффект используют для установления дозы излучения с помощью дозиметров.

Рентгеновское излучение — вред 

Разумеется, в момент открытия и долгие годы после того никто не представлял себе, насколько оно опасно.

Что такое рентгеновское излучение, его свойства и применение :

К тому же, примитивные устройства, продуцирующие эти электромагнитные волны, в силу незащищенной конструкции создавали высокие дозы. Правда, предположения об опасности для человека этого излучения ученые выдвигали и тогда. Проходя сквозь живые ткани, рентгеновское излучение оказывает биологическое действие на них. Основным влиянием является ионизация атомов веществ, из которых состоят ткани. Самым опасным этот эффект становится по отношению к ДНК живой клетки. Последствиями воздействия рентгеновских лучей становятся мутации, опухоли, лучевые ожоги и лучевая болезнь.

Где применяются икс-лучи

  1. Медицина. Рентгенодиагностика — “просвечивание” живых организмов. Рентгенотерапия — воздействие на опухолевые клетки.
  2. Наука. Кристаллография, химия и биохимия используют их для выявления строения вещества.
  3. Промышленность. Выявление дефектов металлических деталей.
  4. Безопасность. Рентгеновское оборудование применяют для обнаружения опасных предметов в багаже в аэропортах и других местах.

Что такое ЭЭД?

ЭЭД (эффективная эквивалентная доза при рентгене)- это величина радиационной безопасности, обозначающая допустимую меру, после преодоления которой могут наступить нежелательные последствия облучения для организма пациента.

У людей разные части тела по-разному реагируют на воздействие рентгеновских лучей. Соответственно, чем больше тот или иной орган восприимчив к излучению, тем выше риск развития патологий.

Коэффициенты восприимчивости органа к излучению:

  • щитовидная железа – 0,03;
  • красный костный мозг – 0,12;
  • молочная железа – 0,15;
  • яичники и семенники – 0,25;
  • другие органы – 0,06.

Первичное действие рентгеновского излучения на ткани организма

Процесс специфического биологического взаимодействия излучения с тканями живого организма делится на несколько этапов и завершается повреждением тканей:

  1. Первичное действие рентгеновского излучения на ткани организма проявляется через возбуждение и ионизацию молекул, в процессе которого появляются свободные радикалы. В другом случае может случиться эффект химического превращение воды, продукты которого провоцируют появление химической реакции с молекулами биологической системы. Первичные процессы не провоцируют развитие существенных патологических процессов.
  2. Вредное воздействие происходит на втором этапе, когда осуществляется разрыв связей внутри сложных органических структур (белковые SH-группы, ненасыщенные связи в липидах, хромофорные основания азотистых групп ДНК).
Читайте также:  Аденокарцинома лёгкого: симптомы и лечение

Норма облучения рентгеном в год

В исследованиях Международной комиссии по радиационной защите была рассчитана общая доза излучения, которую человек получает за год. Нельзя допускать, чтобы этот показатель был больше 10 мЗв/год. Норма фактического облучения в год с учётом всех внешних приборов должна составлять не более 2-3 мЗв/год.

Через какое время можно делать рентген второй раз?

Единого ответа нет, так как этот вопрос является сугубо индивидуальным и решается лечащим врачом. Зависит данный параметр от состояния здоровья пациента и показаний к этому виду обследования.

Профилактического обследования лёгких рекомендуется делать не чаще, чем раз в полгода.

Какое облучение получают рентгенологи?

Охрана труда врачей-рентгенологов жестко регулируется. Профессиональные работники должны соблюдать все правила безопасности и не превышать дозы ионизирующей радиации в работе. При просвечивании людей они ограждаются защитным экраном, отдельным помещением и специальной одеждой. Такие сотрудники проходят регулярные обследования для контроля здоровья.

Но и они иногда &#171,сгорают&#187, на работе. Проявлениями хронической лучевой болезни у рентгенологов могут быть:

Какое облучение получают рентгенологи?
  • Вегето-астенический синдром – снижение аппетита, головные боли, усталость,
  • Офтальмологические проблемы – катаракта, глаукома,
  • Дерматиты, сопровождающиеся шелушением, зудом, хроническим воспалением. При длительном облучении высокими дозами на коже могут образовываться язвы. Со временем излучение может приводить к опухолям кожи и лейкозам.

Как защититься от гамма-излучения

Какая же защита  существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при  довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Как защититься от гамма-излучения

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него  нашлось применение в некоторых сферах жизни.